Informal Curriculum 4-8
 Formal Curriculum 8-15

 Two Rivers Primary School

Introduction

The maths work your child is doing at school initially starts with practical applications to develop a good basis of mental maths skills these skills are learnt through, actions, songs, repetition and the use of equipment. At Two Rivers School we ensure that these skills are learnt and developed on a daily basis in real life and practical situations.

This booklet is designed to inform you about the progression in calculation methods that we use at Two Rivers Primary for addition, subtraction, multiplication and division.

Later when children are taught more formal written methods they are encouraged to use these methods for calculations they cannot solve in their heads. We use Numicon to support our access and learning across the whole school.

0	1	2	3	4	5 88	6	7 88 88	8	9 88 88	10

Written methods of calculations are based on mental strategies. Each of the four operations builds on mental skills which provide the foundation for jottings and informal written methods of recording. Skills need to be taught, practised and reviewed constantly. These skills lead on to more formal written methods of calculation when the children are ready for them. For many children this will be in the later years of primary school or into secondary school.

Strategies for calculation need to be supported by familiar models and images to reinforce understanding. When teaching a new strategy it is important to start with numbers that the child can easily manipulate so that they can understand the concept.

The transition between stages should not be hurried as not all children will be ready to move on to the next stage at the same time, therefore the progression in this document is outlined in stages. Previous stages may need to be revisited to consolidate understanding when introducing a new strategy.

A sound understanding of the number system is essential for children to carry out calculations efficiently and accurately.

By the end of year 6, children will have a range of calculation methods, mental and written. Selection will depend upon the numbers involved. Discussing the efficiency and suitability of different strategies is important.

Remember that the expanded methods are 8 perfectly good ways of working out an answer if the children feel more comfortable and therefore find it easier. They give the same answer and it can often be quicker if they are confident about what they are doing.

These methods are very useful when children are extending their work, for example to numbers involving decimals.

Children should not be made to go onto the next stage if:

> - they are not ready.
> - they are not confident.

Mental calculation

Developing confidence and efficiency in mental calculations is a vital part of Maths teaching throughout Key Stage 2.
Regular practice of number facts is important both at school and at home. Any opportunities to practise are very useful, for example through real life situations such as shopping as well as activities such as games.

The children would greatly benefit from knowing key number facts by heart and recalling them instantly (e.g. number bonds to 10 , tables).

There are many useful games on the internet which give children chance to practise number facts and mental calculations.

For example, Hit the Button is good for practising number bonds and tables facts.

Children can access Education City at home which has a selection of basic number facts games to explore.

Multiplication Facts

Remember that truly knowing tables is not the same as just being able to count up in steps of a given number or being able to recite the table.

Really knowing a table means that the children can instantly tell you any fact up to $10 x$. It also means knowing the corresponding division facts.

For example, a child who knows the $3 x$ table well would be able to answer questions like these with very little hesitation:

$$
9 \times 3,7 \text { lots of } 3,3 \times 4,18 \div 3, \text { how many } 3 s \text { in } 24 ?
$$

As the children get more confident they should also have strategies for using known facts to help them work out other facts and also to work with larger numbers or decimals.
e.g. I know 5×3 is 15 , so I can work out $50 \times 3,5 \times 30,150$ $\div 5,500 \times 3,50 \times 30,5 \times 0.3,150 \div 30 \ldots$
A suggested order for learning tables:
$2 x, 10 x, 5 x, 4 x$ (double $2 x$), $3 x, 6 x$ (double $3 x$), $9 x, 8 x, 7 x$ At Two Rivers this becomes part of our 20:20 sessions.

> Just a few minutes a day could make a real difference to your child's confidence with number.

ICT links

There are many useful games on the internet which give children chance to practise number facts and mental calculations.

For example, Hit the Button is good for practising number bonds and tables facts.

You can also access a selection of basic number facts games on Education City.

Other useful sites include:

www.topmarks.co.uk select Games, 7-11 then category e.g. addition and subtraction
www.bbc.co.uk/schools/ks2bitesize/maths (particularly useful for Y6)
www.ictgames.com (select numeracy - designed for infants but some useful games to practise basic number facts)

mathsframe.co.uk/en/resources/category/22/most-popular

Numberblocks - CBeebies - BBC

Addition

> add and count on addition plus more sum total altogether increase

Recognise numbers 0 to 10

Count reliably up to 10 everyday objects

Find one more than a number

Begin to relate addition to combining two groups of objects

Count along a number line to add numbers together

Begin to use the + and = signs to record mental calculations in a number sentence

Know by heart all pairs of numbers with a total of 10

$5+?=10$

0000000000
$10=5+5$
0000000000
$10=1+9$
0000000000
$10=2+8$

2 count on 5

Know that addition can be done in any order

Put the biggest number first and count on

Next Steps...

$$
8+7=15
$$

Add two single-digit numbers that bridge 10

Begin to partition numbers in order to add

Subtraction

count back take away fewer subtract minus less difference between

Begin to count backwards in familiar contexts such as number rhymes or stories

Ten green bottles hanging on the wall
Five fat sausages
frying in a pan ...

Continue the count back in ones from any given number

Begin to relate subtraction to ' taking away

Three teddies take away two teddies leaves one teddy

Find one less than a number

Count back in tens

Count backwards along a number line to ' take away

Begin to use the - and = signs to record mental calculations in a number sentence

$$
\begin{aligned}
& 20=12+8 \\
& 20-8=12
\end{aligned}
$$

$$
8+12=20
$$

$20-12=8$
Know by heart subtraction facts for numbers up to 10 and 20

Next Steps...

Maria had six sweets and she ate four. How many did she have left?

$$
6-4=2
$$

$6+?=10$
$?+6=10$
$10-6=$?
$10-4=6$

> Subtract single digit
> numbers often bridging through 10

The difference is?

The difference between II and I 4 is 3 .
$14-\mid I=3$
$11+\square=14$

Begin to find the difference by counting up from the smallest number

Begin to partition numbers in order to take away

Multiplication

> multiplication product once, twice, three times double groups of repeated addition lots of array, row, column multiply times multiple

Count in tens from zero

Count in twos from zero

Count in fives from zero

double 4 is 8
$4 \times 2=8$
half of 8 is 4
$8+2=4$

Division

の『○凹ீ
Gboups of
lofs of dovoide divided by
quofienu
division
factop
remainder divisisible
Ralfs
Ralve
shome

Count back in twos

Count back in fives

Know halves

Use known multiplication facts to work out corresponding division facts

If $2 \times 10=20$ then
$20 \div 10=2$
$20 \div 2=10$

15 shared between 5

Next Steps...

12 divided into groups of 3 gives 4 groups
$12 \div 3=4$

12 divided into groups of 4 gives 3 groups

$$
12 \div 4=3
$$

Reinforce division as grouping through the use of arrays

әочм әио IDNsin әut zas of tubtuodu\|

Recognise complements of any fraction to 1 . e.g. $1-1 / 4=3 / 4$
or $1-2 / 3=1 / 3$.
$\overline{91 \varepsilon \xi}=d 91+\varepsilon \xi$
013 L3 D893
167170

$10-6=[]$ are seen as ways of expressing the same question.

 Addition and subtraction are inverse operations. Right from the start children should be

Add like fractions, e.g. $3 / 8+1 / 8+1 / 8$.

e.g. $£ 3.24+£ 2.58$ Use expanded and compact column addition to add amounts of money.

Compact column addition with larger numbers.

$10-6=[]$ are seen as ways of expressing the same question.

 Addition and subtraction are inverse operations. Right from the start children should be \begin{tabular}{ccc}
6 \& 11 \& 16

7 \& χ \& \varnothing

3 \& 5 \& 8

\hline 3 \& 0 \& 8

\hline

600 \& 110 \& 16

700 \& 20 \& 6

-300 \& 50 \& 8

\hline 300 \& 60 \& 8

\hline
\end{tabular}

Expanded column subtraction.

- Written Subtraction
Begin to use column subtraction.
$\overline{0792 J}=d 07+93+023$

Subtract like fractions, e.g. $3 / 8-1 / 8=2 / 8$.

ŁId/EId/ZId

When faced with a calculation problem, encourage children to ask...
*Can I do this in my head?

* Could I do this in my head using drawings or jottings to help me?
* Do I need to use a written method?
* Should I use a calculator? (only if is necessary with the numbers involved)

Also help children to estimate and then check the answer.
Encourage them to ask...
Is the answer sensible?

